
AN2295/D
Rev. 4, 10/2003

Developer’s Serial Bootloader
for M68HC08

Application Note
By: Pavel Lajsner
Motorola Czech System Laboratories
Roznov p. R., Czech Republic

Project Objectives

The Developer’s Serial Bootloader for M68HC08 allows in-circuit
reprogramming of Motorola’s M68HC08 FLASH devices using standard
communication media (e.g., a serial asynchronous port). Once the MCU is
programmed with the bootloader, the MCU memory can be modified in-circuit.
Because of its ability to modify MCU memory in-circuit, the serial bootloader is
an M68HC08 MCU utility that may be useful in developing applications.

This application note is written for embedded software developers interested in
alternative reprogramming tools. The Developer’s Serial Bootloader is not
intended to compete with existing MON08 development tools; it is more of a
complementary utility for demo purposes, or for applications originally
developed using MMDS and requiring minor modifications to be done in-circuit.
The serial bootloader offers a zero-cost solution to applications already
equipped with a serial interface and that have the SCI pins available on a
connector.

This document also describes other programming techniques, including:

• FLASH reprogramming using ROM routines

• Simple software SCI

• Usage of the internal clock generator

• PLL clock programming
© Motorola, Inc., 2002

AN2295/D
Figure 1. Top Level View

Project Goals Motorola M68HC08 MCUs use a standard monitor mode interface for FLASH
programming. Configuration of the monitor mode requires a specific clock and
requires high voltage (monitor mode entry voltege Vtst = VDD + 2.5 = 8 V)
applied to the IRQ pin upon MCU startup. Also, establishing monitor mode
communication consumes a few pins. When these requirements become
obstacles, and if the application already uses a standard serial SCI interface for
communication, a different code (the bootloader) can be used to communicate
with the PC using the same interface that is used for reprogramming.

Note that the bootloader can be used only for reprogramming, not for in-circuit
debugging. The bootloader is a low-cost, in-circuit programming solution.

Requirements The described bootloader must fit these requirements:

• Low occupation of memory — Naturally, some memory will be
consumed by the bootloader. The intention is keep this amount as low
as possible. Other versions of bootloaders use more than 1 KB of
memory, which is unacceptable on devices with 3 KB of memory
available such as the MC68HC908JK3. The solution described here
implements all features as simply as possible (e.g., excluding
checksums, etc.). The target size is below 500 B.

• Low pin-count — The original intention is to use standard (already
implemented) means of communication (typically SCI on boards that are
primarily intended for communication). The standard SCI uses two
different wires (RxD, TxD). No additional wires are used to start
bootloader.

• Transparency with respect to the user S19 file — The complete
application should be transparent to the user code S19 file. This means
that no adjustments are required in the S19 file. Other known HC08
bootloader applications usually require modifications to interrupt vectors
or require other tweaks to the S19 file for it to accept the bootloader.

Windows or Linux PC
HC08 embedded application

(under development
or under re-configuration)
2 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
FC Protocol Description
Demo Features of
Bootloader
Application

This document describes several different M68HC08 bootloader
implementations which vary mainly because the target M68HC08 MCUs are
equipped with different features. Several features of the M68HC08 Family are
also demonstrated, making this document useful to a wider audience than
those who only require the bootloader. The different M68HC08
implementations also demonstrate the following features:

• Usage of built-in ROM routines for FLASH self programming (see also
the application note Using MC68HC908 On-Chip FLASH Programming
Routines, ROM-Resident Routines in the MC68HC908GR8,
MC68HC908KX8, MC68HC908JL3, MC68HC908JK3, and the
MC68HC908JB8, Motorola document order number AN1831/D).

• User implementation of in-circuit re-programming routines on ROM-less
HC08 MCUs (e.g., the HC908GP32 family)

• Usage of different implementations of the FLASH block protection
technique (M68HC908GP/GR/KX vs. M68HC908JK/JL Families)

• Implementation of software SCI on SCI-less HC08 MCUs (e.g., the
M68HC908JK/JL Family)

• Usage of the internal clock generator and its trimming (M68HC908KX
Family)

FC Protocol Description

This section provides a description of the protocol that is used to communicate
between the PC and target MCU in order to reprogram the MCU. A non-specific
MCU description is followed by an explanation of M68HC08 specific
implementation features.

A simplified state diagram shows separate states of the bootloader, which are
described in detail later in this document.
MOTOROLA Developer’s Serial Bootloader for M68HC08 3

AN2295/D
Figure 2. Simplified Flow Diagram of the Bootloader Application

FC Protocol The requirements mentioned in the Requirements section dictate an
implementation be as simple as possible, with low memory consumption.
Because of that, the protocol running between the master PC and slave MCU
is also very simple. It is called FC protocol because one significant character
(the acknowledge, or ACK) $FC or 11111100b is thoroughly used. The reasons
for such a specific selection are described below.

Initial Hook-Up There are several methods to enter bootloader mode. Several other solutions
use a certain level on certain pin method. An example of this method is: If
logical 0 appears on an IRQ pin during the MCU’s startup, then the bootloader
code is started. Otherwise, the user code is begun.

Since another requirement for the developer’s serial bootloader application is
to use the lowest number of pins, a certain character at a certain time method
is used. This means that the MCU sends out an ACK character through the
serial interface and waits for an answer. If no character is received within the
specified time (hook-up time-out), the process continues with the user code.

NOTE: If this becomes a limitation for some reason, the user may modify the
bootloader code to meet his/her needs (e.g., a simple IRQ pin test at startup
can be easily implemented). See more in System Limitations.

Here the protocol allows two scenarios, depending on whether the MCU is
running on a known and exact frequency or if it uses an RC clock or internal
clock (or basically a clock which is not known at compile time).

RESET

commands

calibration

hook-up

communication

read

write

erase

ident

quit

RESET source

test

code

user

power-on

time-out
4 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
FC Protocol Description
Unknown MCU Communication Speed

If the frequency is uncertain (not known at compile time), the MCU will not
check that an incoming ACK character conforms only to the $FC pattern. Due
to the MCU clock tolerance, several characters can be interpreted differently
instead of the original $FC sent out by the PC as described below:

Figure 3. Matching Different Communication Speeds

Table 1 shows the characters that can still be correctly received (i.e., without
framing or noise errors) if transmit and receive speeds are not equal.

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTARTIDLE
BOTH MCU AND PC

DATARATES ARE EQUAL

MCU RECEIVES 0XFC

MCU’S CLOCK IS

3 TIMES FASTER

MCU RECEIVES 0XFF

MCU’S CLOCK IS

3 TIMES SLOWER

MCU RECEIVES 0X00

TIME

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

ST
O

P

ST
AR

T
ID

LE

D0 D1STARTIDLE

PC TRANSMITS 0XFC CHARACTER AT PROPER DATA RATE:
MOTOROLA Developer’s Serial Bootloader for M68HC08 5

AN2295/D
.

NOTE: The $FC pattern check on the MCU side can be eliminated completely, thus
saving more MCU memory.

The same situation also occurs in reverse, as in when the MCU transmits to the
PC at an unmatched data rate. The PC then receives (and accepts) characters
that are different from the $FC character. So, the PC accepts all characters
from the mentioned set [$FF, $FE, $FC, $F8, $F0, $E0, $C0, $80, $00]. If such
a character is received, an answering ACK is sent back to the MCU
immediately. After the MCU recognizes this answer, it enters the next phase:
Slave Frequency Calibration.

Known MCU Communication Speed

If the frequency is certain (known at compile time), the MCU will be configured
to exactly match the communication speed of the PC. All characters are
received correctly and without any distortion.

The MCU sends $FC to the PC, which immediately answers back to the MCU.
After the ACK is received, the MCU also (formally) enters Slave Frequency
Calibration phase.

Slave Frequency
Calibration

During this phase, MCU clock calibration is accomplished. Up to now, the PC
has communicated with the MCU at a speed which could be from 33% to 300%
tolerance. This part must adjust the MCU communication speed to match that
of the PC.

Table 1. PC to MCU Transmission — Unmatched Data Rate

PC Data Rate MCU Data Rate
Character
Received
in Binary

Character
Received

in Hex

9600 9600*1/3 11111111b 0xFF

9600 9600*2/3 11111110b 0xFE

9600 9600*3/3 11111100b 0xFC

9600 9600*4/3 11111000b 0xF8

9600 9600*5/3 11110000b 0xF0

9600 9600*6/3 11100000b 0xE0

9600 9600*7/3 11000000b 0xC0

9600 9600*8/3 10000000b 0x80

9600 9600*9/3 00000000b 0x00
6 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
FC Protocol Description
Figure 4. Start-Up Communication with Calibration

After the PC enters the calibration phase, the no-break time-out starts. If within
this period a correct ACK character ($0xFC) is not received, a break character
is sent at the communication data rate.

NOTE: A break character consists of 10 successive logical zeros. For example, at a
9600 baud data rate, its high-low-high pulse lasts 10 x 104 µs = 1.04 ms.

The MCU then measures the length of the break character and determines,
whether its clock is too fast or too slow. The MCU then makes an adjustment
to its system clock (or an adjustment of receive routines, if, for example,
software serial communication is employed). This can be repeated as many
times as needed for the MCU to achieve the proper clock speed.

MCU PC

ACK

ACK

H
O

O
K-

UP
 T

IM
E-

O
U

T

N
O

-B
RE

AK
 T

IM
E-

O
U

T

break

break

ACK

CALIBRATION UNSUCCESSFUL
OR ONLY ROUGH CORRECTION DONE

CALIBRATION SUCCESSFUL

ACK IS SENT AT CORRECT DATARATE

ACK IS SENT AT UNCERTAIN DATARATE

FROM NOW ON, THE COMMUNICATION IS AT THE CORRECTLY SPECIFIED DATA RATE

ONLY 0XFC CHARACTER CAN BE RECEIVED

N
O

-B
RE

AK
 T

IM
E-

O
U

T

MOTOROLA Developer’s Serial Bootloader for M68HC08 7

AN2295/D
After the MCU identifies (measures) that it operates at the correct clock (or after
the receive routines are calibrated), the ACK character is sent to the PC to stop
sending more calibration characters. See Figure 4.

If the MCU knows that it operates at the correct data rate (no calibration is
possible or needed; the MCU clock is crystal driven), it can send an ACK
immediately, skipping the calibration phase entirely.

Figure 5. Start-Up Communication Without Calibration

All further communication is at the specified data rate.

Interpreting MCU
Commands

After the communication between the MCU and the PC is established, the MCU
enters the main command interpreter loop.The MCU executes one of a few
simple commands needed to reprogram its own nonvolatile memory. The
communication is conducted on a master-slave mechanism, where the PC
issues the commands, the MCU executes them and acknowledges the
completion of each command, either by data or by a single ACK character.

The minimal set of commands is comprised of:

• Ident Command

• Quit Command

Such a subset of the commands is already functional but useless, so two more
basic commands are implemented for pure reprogramming:

• Erase Command

• Write Command

MCU PC

ACK

ACK

ACK
NO CALIBRATION REQUIRED

ACK IS SENT AT CORRECT DATA RATE

ACK IS SENT AT SPECIFIED DATA RATE

CORRECT $FC CHARACTER IS RECEIVED WITHIN TIME-OUT

HO
O

K-
U

P
TI

M
E-

O
U

T

N
O

-B
R

EA
K

TI
M

E-
O

U
T

8 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
FC Protocol Description
If the user needs a verification feature, one additional (read) command must be
compiled into the MCU code. For pure reprogramming purposes (minimal
configuration), it is not required.

• Read Command

Generally, each command and response sequence looks like this:

Figure 6. Typical Command and Response

Ident Command

The Ident Command (coded as ‘I’, $49) has no additional fields.

This command is immediately issued by the PC after communication is
established. The purpose of the Ident Command is to let the PC know several
basic properties of the MCU being programmed. All multi-byte fields are sent
with MSB first.

• Version number and capability table — 1 byte

Figure 7. Version Number and Capability Table

COMMAND ADDRESS DATA TO MCU

DATA FROM MCU

* Dashed fields are not always implemented, data from the MCU may contain only an ACK character instead.

PC TO MCU COMMAND

MCU TO PC RESPONSE

LENGTH

7 6 5 4 3 2 1 0

RCS RESERVED VERSION NUMBER

BIT
MOTOROLA Developer’s Serial Bootloader for M68HC08 9

AN2295/D
RCS — Read Command Supported flag

The RCS flag informs the PC whether the read command is supported
(implemented). If not, all calls to the read routine are simply ignored by the
MCU and no response is sent back to the PC. It’s advisable that PC software
warns the user that no read capabilities are available.

1 = Supported
0 = Not Supported (usually due to memory constraints)

RSVD — Reserved

These bits are reserved for future use, unused, and should be set to zero.

VER — Protocol version

Current protocol version is 0x1. In version 1 of the protocol, additional fields
are defined as:

• Start address of reprogrammable memory area — 2 bytes

• End address of reprogrammable memory area + 1 — 2 bytes

• Address of Bootloader User Table — 2 bytes

• Start address of MCU interrupt vector table — 2 bytes

• Length of MCU erase block — 2 bytes

• Length of MCU write block — 2 bytes

• Bootloader data (specific bootloader info, see implementation) —
8 bytes

• Identification string, zero terminated — <n> bytes

Figure 8. Ident Command

Erase Command

The erase command (coded as ‘E’, $45) has only an address field, no length or
data fields. The start address is a two-byte field, MSB first.

The MCU erases the address block where the specified address resides. The
length of block to be erased is equal to the erase block size (typically
dependent on hardware).

I (0X49)

VERSION

PC TO MCU COMMAND

MCU TO PC RESPONSE

START
MEM

END
MEM

BOOTLOADER
USER TABLE

INTERRUPT
VECTOR TABLE

ERASE
BLOCK SIZE

WRITE
BLOCK SIZE

ID STRING 0
& CAPS.

BOOTLOADER
DATA
10 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
FC Protocol Description
After the MCU completes execution of the command, the ACK ($FC) character
is sent back to the PC. No minimum or maximum execution times of the erase
command are specified.

Figure 9. Erase Command

Write Command

The write command (coded as ‘W’, $57) has both address and data fields. The
address contains the first address to be programmed. The first byte is the
length, followed by the number of bytes to be programmed. The start address
is a 2-byte field, MSB first. The length is a 1-byte field.

After the MCU completes execution of the command, the ACK ($FC) character
is sent back to the PC. No minimum or maximum execution times of the write
command are specified.

Figure 10. Write Command

Read Command

The read command (coded as ‘R’, $52) has both address and data fields.
Address contains the first address to be programmed; the single byte is the
length of data to be read. The start address is a two-byte field, MSB first. The
length is a one-byte field.

The MCU sends this number of read bytes back to the PC.

E ($45)

ACK

PC TO MCU COMMAND

MCU TO PC RESPONSE

START
ADDRESS

COMMAND EXECUTION

W ($57)

ACK

PC TO MCU COMMAND

MCU TO PC RESPONSE

BINARY DATALENGTH
START

ADDRESS

COMMAND EXECUTION
MOTOROLA Developer’s Serial Bootloader for M68HC08 11

AN2295/D
Figure 11. Read Command

Quit Command

The quit command (coded as ‘Q’, $51) has no address or data fields. Execution
of bootloader code is finished immediately, and the user code is started. No
ACK ($FC) character is sent back to the PC.

Figure 12. Quit Command

Bootloader User
Table

The bootloader user table is a reprogrammable memory area intended for
storage of bootloader-specific data. This memory area is not available for the
user program. For memory allocation of this table refer to FC Protocol,
Version 1, M68HC908 Implementation.

FC Protocol,
Version 1,
M68HC908
Implementation

This section describes all features that are specific to the M68HC908
bootloader implementation. Mainly the memory allocation is heavily MCU
specific so the meaning of all variables is explained here in detail.

Figure 13 shows the memory allocation typical to the M68HC908 devices with
the bootloader pre-programmed. For example, the MC68HC908KX8 device
memory map includes:

• 7680 bytes of FLASH memory ($E000–$FDFF)

• 192 bytes of random-access memory (RAM) ($0040–$00FF)

• 36 bytes of user-defined vectors ($FFDC–$FFFF)

R ($52)

PC TO MCU COMMAND

MCU TO PC RESPONSE
BINARY DATA

LENGTH
START

ADDRESS

Q ($51)

PC TO MCU COMMAND

MCU TO PC RESPONSE
<NO RESPONSE>
12 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
FC Protocol Description
Figure 13. Simplified Example of Memory Allocation in MC68HC908KX8

The bootloader code occupies the top end of FLASH memory (the highest
memory address space). This placement allows an effective use of the FLASH
block protection technique (see the M68HC908 data sheet for details).

The main idea behind this is that by setting a FLBPR (FLASH block protection
register), all address space above this address is protected from both
intentional and unintentional erasing/re-writing. Once both bootloader and
FLBPR register are programmed into memory, the bootloader code is
completely protected from unintentional modification by user code.

NOTE: Some HC908 derivatives do have an FLBPR register in RAM instead of FLASH
(e.g. the HC908JK/JL family). The bootloader code sets this register properly
but the user code can eventually modify FLBPR and erase/write the bootloader
code.

The following values are presented for the MC68HC908KX8 bootloader to the
PC using this example:

• $01 — Version 1, Read command not implemented (bit 7)

• $E000 — Start address of re-programmable memory area

• $FC80 — End address of re-programmable memory area + 1

INTERRUPT VECTOR TABLE

UNIMPLEMENTED AREA

BOOTLOADER CODE

BOOTLOADER USER TABLE

FREE MEMORY AREA

FOR USER CODE

UNIMPLEMENTED AREA

RAM

I/O REGISTERS

0xFFDC

0xFFFF

0xFE00

0xFCC0

0xFC80

0xE000

0x0100

0x0040

0x0000

FLASH MEMORY AVAILABLE
FOR USER CODE

FLASH MEMORY AVAILABLE
ON 68HC908KX8 DEVICE

THIS AREA OF FLASH IS PROTECTED
USING FLBPR REGISTER
MOTOROLA Developer’s Serial Bootloader for M68HC08 13

AN2295/D
• $FC80 — Address of Bootloader User Table

• $FFDC — Start address of MCU interrupt vector table

• $0040 — Length of MCU erase block

• $0020 — Length of MCU write block

• 0,0,0,0,0,0,0,0 — Bootloader data. No strictly defined syntax; different
HC08 implementations provide different values (for example, the sixth
value in the MC68HC908KX8 implementation is the value of the internal
clock generator trim register after calibration). All these bootloader data
are then programmed back into the bootloader user table and can be
retrieved during all subsequent starts (e.g., to trim the MCU’s internal
clock generator to the best known value before user code start).

• ‘KX8-IR’,0 — Identification string, zero terminated. Info to be printed on
PC screen.

Interrupt Vector Table
Translation

Since the FLASH block protection technique also protects the interrupt vector
table from being overwritten, some method must be used to translate these
vectors to the different locations. For this purpose, the bootloader user table
has been implemented. It’s a part of memory which is NOT protected by the
FLBPR but is not available to the user program. All standard interrupt vectors
are pointing to this table where JMP instructions are expected to be stored for
each interrupt. The only exception is the reset vector, which points to the start
of bootloader code. When an interrupt occurs, the vector is fetched from
protected memory and directs execution to continue at the corresponding JMP
instruction in the bootloader user table. See Figure 14. Note that in a standard
interrupt vector table, each record is two bytes long (each vector is a 16-bit
address). This is different from the bootloader user table where each record is
three bytes long — a JMP opcode ($CC) plus a 16-bit address.

The bootloader requirements dictate that transparent operation with respect to
the user S19 file must be programmed into the device. For that, another piece
of intelligence is built into the PC master code (instead of the MCU slave). The
translation works like this:

If the record in the interrupt vector table is detected in the user S19 file, the
value is translated into the corresponding spot in the bootloader user table,
including the JMP instruction (opcode $CC). For example, if the user S19
file contains #3 interrupt vector $E123 at address $FFE8, such a vector is
translated into the sequence $CC, $E1, $23 (JMP $E123) that is
programmed to the $FC81 address in the bootloader user table.
14 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
FC Protocol Description
Figure 14. Interrupt Vector Table Translation Explanation

INTERRUPT VECTOR TABLE

BOOTLOADER USER TABLE

0XFFDC

0XFCC0

0XFC80

...

...

RESET VECTOR

INTERRUPT VECTOR 1

INTERRUPT VECTOR 2

INTERRUPT VECTOR 3

INTERRUPT VECTOR 16

INTERRUPT VECTOR 17

BOOTLOADER CODE

0XFD00

0XFE00

START

EXIT

BOOTLOADER DATA

0XFC88

0XFFDE

0XFFE0

0XFFE8

0XFFEA

0XFFEC

0XFFFE

0XFC8B

0XFC8E

0XFC81

0XFC84

0XFCB8

0XFCBB

JMP USER RESET VECTOR

JMP USER INT. VECT. 1

JMP USER INT. VECT. 3

JMP USER INT. VECT. 16

JMP USER INT. VECT. 17

JMP USER INT. VECT. 2

...

USER CODE

START (RESET)

INTERRUPT ROUTINE 1

INTERRUPT ROUTINE 2

INTERRUPT ROUTINE 16

INTERRUPT ROUTINE 17

...
MOTOROLA Developer’s Serial Bootloader for M68HC08 15

AN2295/D
Using this method, the user S19 file does not need to be modified in any way
except that the lower address of the end of FLASH memory must be
considered. Also, every interrupt is delayed by the execution time of this JMP
instruction (3T) as summarized in Each Interrupt 3T Delayed.

User Code Start In order to provide a register setup close to the way it appears after MCU reset,
the user code is started in the way that may look bizarre at first glance.

If the bootloader must quit and run user code, an illegal operation is
intentionally executed (opcode $32). This causes an illegal operation reset and
the MCU restarts. During bootloader startup, a SIM reset status register
(SRSR) is tested. If power-on-reset is not detected, the user code is started
instead of the bootloader code. This allows the transparent operation of all
other resets (like illegal address, etc.) with only a short additional delay caused
by testing of the SRSR register and executing associated jump instructions.

NOTE: In some implementations, a pin reset (caused by external RESET pin) is also
included as a valid source of reset for the bootloader to start. This allows
remote in-circuit reprogramming in embedded applications that are able to
drive the M68HC08 MCU’s RESET pin.

NOTE: One additional test has been added to the real bootloader application — if no
source of reset is detected (i.e., if the SRSR register is zero), the bootloader is
also started. This may happen when reset is caused by an external pin, but the
reset pulse is shorter than specified. In that case, the minimum length of reset
pulse that will cause reset is shorter than the length needed for the proper
propagation of the external reset flag to the SRSR register.

Since the SRSR register is one-time readable (it clears after read), no
subsequent reads of this registers provide a valid value. This is another
limitation also noted in System Limitations.

System Limitations This section summarizes all limitations which must be considered when using
the bootloader along with the user application.

Memory Occupied

This is a natural limitation imposed. One of the strongest requirements was to
obtain the smallest code possible. Typical M68HC908 implementations are
between 300 and 500 bytes including the bootloader user table. If the target
M68HC08 MCU is capable of FLASH programming using internal ROM
routines, then the memory consumption is near the lower limit. Bigger
M68HC08 MCUs (which are not usually equipped with ROM code for FLASH
programming) will require around 500 bytes of FLASH out of 32 KB (as is the
case with the MC68HC908GP32).

The bootloader is placed at the upper end of FLASH memory, thus the only
modification required in the user code is in the memory mapping (typically
found in the linker parameter file).
16 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
FC Protocol Description
The M68HC08 MCU which is to be reprogrammed also signals the actual
FLASH addresses that are available. The PC master software won’t allow
programming if the user code overlaps with bootloader code.

Time Delay Upon Start-Up and Initial Communication

As already mentioned, another requirement dictated the minimum of pins to
have specific meaning during bootloader start-up. Especially in communication
systems (for example, those using a standard serial port), the “pin overhead” is
zero and the recognition is done in the time domain. So, the bootloader waits a
certain amount of time to receive an answer from the PC upon start-up. If none
is received, the user code starts. The typical delay is the range of several
hundred milliseconds.

If this start-up delay becomes an issue for the final application, the user may
decide to modify the bootloader code and use an IRQ-low upon start-up
method instead. A simple test of the voltage level on the IRQ pin (or, basically,
on any other input pin) could be used to decide whether the bootloading
sequence is required by the user.

Each Interrupt 3T Delayed

Every interrupt call is delayed by 3T bus clocks that are required to execute the
JMP instruction stored in the bootloader user table. This interrupt vector
translation (as described in Interrupt Vector Table Translation) has been
chosen as the best solution for achieving user code transparency along with
security of the bootloader code itself.

The interrupt latency is about 10 to 15T anyway (assuming that no interrupt is
being executed), so this additional delay is not significant for the most
applications.

FLBPR Not Usable (in Some M68HC08 Family MCUs)

The bootloader uses a FLASH block protection technique to protect itself from
being overwritten (where applicable).

Some M68HC08 MCUs (such as the KX, GP and GR devices) have this FLASH
block protection register stored in FLASH and it cannot be modified when
in-circuit. The FLBPR itself can be erased or programmed only with an external
voltage, VTST, present on the IRQ pin. Since this feature is completely
dedicated to bootloader code protection, it’s unavailable to the user application
code. If the value for FLPBR appears in the user S19 code, an error is
displayed and all programming is cancelled. Such an occurrence must be
omitted from user S19 code.
MOTOROLA Developer’s Serial Bootloader for M68HC08 17

AN2295/D
Some families have the FLASH block protection register stored in RAM instead
(the JK/JL Families are like this). The bootloader sets the proper value at the
beginning of its execution in order to protect itself. However, user code may
freely modify this register and protect its own memory areas as needed. This
also implies that the bootloader is not 100% protected from user code.

For both cases, see the MCU data sheets for a detailed explanation.

SRSR Register Unusable

The bootloader uses an SRSR register (as described in User Code Start) to
recognize the source of reset to determine whether the user code shall be run.
Since the SRSR register is one-time readable (i.e., it is reset after first read),
the user code does not have access to the SRSR value (if the bootloader is
present in the memory and makes the first read after each reset). There’s no
simple remedy for this situation. After the SRSR register is read by the
bootloader, it’s also stored in one RAM location. Unfortunately, its memory
location may differ from one implementation to another. If the user desperately
needs both the SRSR register and bootloader usage, he/she must redirect the
SRSR reading to this specific RAM location. Its actual position in the
specification can be obtained from the bootloader’s MAP file.

MCU Slave Software

The following section provides a detailed description of the three typical
M68HC08 bootloader implementations. All code is written in assembly
language. Several selected targets and different features are described as
follows:

• MC68HC908KX Implementation — ICG, On-Chip ROM Features

• MC68HC908JK/JL Implementation — Soft-SCI, On-Chip ROM
Features

• MC68HC908GP Implementation — ROM-Less Programming

• MC68HC908GR Implementation — On-Chip ROM Features, Known
Crystal Frequency

• MC68HC908MR Implementation — ROM-Less Programming, PLL
Circuit Usage

• MC68HC908GT and MC68HC908EY Implementations — Fully
Compatible with MC68HC908KX

• MC68HC908QT/QY — Soft-SCI, On-Chip ROM features, Simpler
ICG Usage, (Spare FLASH memory blocks are utilized), Single-wire
Communication

• MC68HC908LJ Implementation — On-Chip ROM Features, Known
Crystal Frequency, PLL Circuit Usage
18 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
MCU Slave Software
MC68HC908KX
Implementation —
ICG, On-Chip ROM
Features

The M68HC908KX Family is equipped with an Internal Clock Generator (ICG)
module. This allows a very effective quartz-less implementation of the
bootloader, which is then also independent of any specific clock source or clock
speed.

The on-chip FLASH programming routines simplify the bootloader and improve
memory consumption as well.

The communication between the MCU and PC uses a standard serial channel
(SCI).

The flowchart follows.
MOTOROLA Developer’s Serial Bootloader for M68HC08 19

AN2295/D
Figure 15. KX Bootloader Flowchart

RESET

SRSR RESET
SOURCE TEST

MCU CONFIG

ICG, SCI INIT

TIMEOUT

WAIT FOR COMMAND

IDENT? ERASE? WRITE? READ? QUIT?

SEND IDENT DATA

RECEIVE ADDRESS RECEIVE ADDRESS

RECEIVE LENGTH

RECEIVE DATA

CALL WRITE

ROUTINE IN ROM

CALL ERASE

ROUTINE IN ROM

RECEIVE ADDRESS

RECEIVE LENGTH

SEND DATA

SEND ACK

EXECUTE ILLEGAL

OPERATION

SEND ACK AND

WAIT FOR ANSWER

Y Y Y Y

Y

TIMEOUT EXPIRED

USER CODE
START

POR CAUSED RESET

DISABLE SCI

MEASURE BREAK

WAIT FOR HI-LO EDGE

TRIM ICG, ENABLE SCI
20 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
MCU Slave Software
Internal Clock
Generator (ICG)
Usage — Initialization

The initialization of the ICG is made very simple. Since the ICG is active and
clock monitor is disabled after reset, the only action required is the modification
of the ICG multiply register. Then, the ICGS flag (bit 2) of the ICG control
register reports whether ICG is stable after the frequency change.

ICGMRINIT EQU $20

MOV #ICGMRINIT,ICGMR ; set 9.8304MHz BUS clock
LOOP: BRCLR 2,ICGCR,LOOP ; wait until ICG stable

Internal Clock
Generator Usage —
Trimming

Even though the trimming routine is in ROM, a small bug renders this code
unusable. So the source code has been taken and inserted in the bootloader
code.

Although application note Using MC68HC908 On-Chip FLASH Programming
Routines, ROM-Resident Routines in the MC68HC908GR8, MC68HC908KX8,
MC68HC908JL3, MC68HC908JK3, and the MC68HC908JB8) (Motorola
document order number AN1831/D) documents the procedure for calculating
the trim factor out of the measured CPU speed, the code itself omits the final
doubling of the number of cycles.

* FOLLOWING LOOP IS EXECUTED UNTIL THE END OF THE BREAK SIGNAL. THE BREAK
* SIGNAL LASTS 10 BIT TIMES. IF COMMUNICATING AT f OP /256 BPS, THEN 10 BIT
* TIMES IS 2560 CYCLES. EACH TIME THROUGH THE LOOP IS 10 CYCLES, SO WE
* EXPECT TO EXECUTE THE LOOP 256 TIMES IF THE KX8 IS IN SYNC SERIALLY WITH
* THE HOST. IF WE STAY IN THE LOOP FOR > 256 LOOP CYCLES, THEN THE KX8
* MUST BE RUNNING FASTER THAN EXPECTED, AND NEEDS TO BE SLOWED DOWN. IF WE
* STAY IN THE LOOP FOR < 256 LOOP CYCLES THEN THE KX8 MUST BE RUNNING SLOWER
* THAN EXPECTED AND NEEDS TO BE SPEEDED UP. THE AMOUNT THAT WE CHANGE THE
* CPU SPEED IS EQUAL TO THE NUMBER OF LOOP CYCLES OVER OR UNDER 256. SO IF
* WE GO THROUGH THE LOOP 240 TIMES, THEN WE ARE RUNNING
* (256-240)/256 = 6.25% FAST. EACH INCREMENTAL CHANGE WE MAKE TO THE TRIM REGISTER
* (ICGTR) WILL MAKE A 0.195% CHANGE TO THE INTERNAL CLOCK. THAT IS, INCREMENTING
* THE REGISTER BY ONE OVER THE DEFAULT VALUE OF $80 STORED THERE WILL
* DECREASE THE INTERNAL CLOCK BY 0.195%, AND VICE VERSA.
* NOW EACH EXECUTION OF THE LOOP OVER OR UNDER WHAT IS EXPECTED (256 TIMES)
* REPRESENTS AN ERROR OF 1/256 = .391% ERROR. SO WE'LL NEED TO DOUBLE THE
* NUMBER OF LOOP CYCLES AND USE THIS NUMBER TO CORRECT THE TRIM REGISTER.
* OUR PRECISION FOR TRIMMING IS THEREFORE 0.391%.

So the actual code adds an ASLA instruction which doubles the trim factor
before the actual write to the ICG Trim Register.

ICGTRIM:
 CLRX
 CLRH

MONPTB4:
 BRSET 4,PTB,MONPTB4 ;WAIT FOR BREAK SIGNAL TO START
CHKPTB4:
 BRSET 4,PTB,BRKDONE ;(5) GET OUT OF LOOP IF BREAK IS OVER
 AIX #1 ;(2) INCREMENT THE COUNTER
 BRA CHKPTB4 ;(3) GO BACK AND CHECK SIGNAL AGAIN
MOTOROLA Developer’s Serial Bootloader for M68HC08 21

AN2295/D
BRKDONE:
 PSHH
 PULA ;PUT HIGH BYTE IN ACC AND WORK WITH A:X
 TSTA ;IF MSB OF LOOP CYCLES = 0, THEN BREAK TAKES TOO
 TXA ;FEW CYCLES THAN EXPECTED, SO TRIM BY SPEEDING
 BEQ SLOW ;UP f OP .
FAST: CMP #$40 ;SEE IF BREAK IS WITHIN TOLERANCE
 BGE OOR ;DON'T TRIM IF OUT OF RANGE
 ASLA ;multiply by two to get right range
 ADD #$80 ;BREAK LONGER THAN EXPECTED, SO SLOW DOWN f OP
 BRA ICGDONE
SLOW: CMP #$C0 ;SEE IF BREAK IS WITHIN TOLERANCE
 BLT OOR ;DON'T TRIM IF OUT OF RANGE
 ASLA ;multiply by two to get right range
 SUB #$80
ICGDONE:
 STA ICGTR
OOR:
 RTS

The complete explanation of the trimming procedure can be found in the
mentioned application note.

MC68HC908JK/JL
Implementation —
Soft-SCI, On-Chip
ROM Features

The MC68HC908JK/JL devices are among the least expensive in the
M68HC08 Family. Due to the cost, no hardware SCI is present. Therefore, its
software counterpart must be implemented. This also allows the unrestricted
selection of which pins are used for serial communication (the provisions are
made in the code that also an IRQ pin can be used as an input serial line too).

The JK/JL Family also exists in an RC version (an RC oscillator is used instead
of quartz). Thanks to the existence of the bootloader’s calibration, any variation
in speed is compensated for. If the desired clock frequency is out of the
specified range covered by the calibration system, the code must be modified.

The JK/JL Family is also equipped with on-chip FLASH programming routines,
so FLASH programming is performed by these, saving some additional
memory.

The main program flowchart follows and is very similar to the previous case.
22 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
MCU Slave Software
Figure 16. JK/JL Bootloader Flowchart

RESET

SRSR RESET
SOURCE TEST

MCU CONFIG

...

TIMEOUT

WAIT FOR COMMAND

IDENT? ERASE? WRITE? READ? QUIT?

SEND IDENT DATA

RECEIVE ADDRESS RECEIVE ADDRESS

RECEIVE LENGTH

RECEIVE DATA

CALL WRITE

ROUTINE IN ROM

CALL ERASE

ROUTINE IN ROM

RECEIVE ADDRESS

RECEIVE LENGTH

SEND DATA

SEND ACK

EXECUTE ILLEGAL

OPERATION

SEND ACK AND

WAIT FOR ANSWER

Y Y Y Y

Y

TIMEOUT EXPIRED

USER CODE
START

POR CAUSED RESET

...

MEASURE BREAK

WAIT FOR HI-LO EDGE

CALIBRATE SOFT-SCI
MOTOROLA Developer’s Serial Bootloader for M68HC08 23

AN2295/D
Software-SCI
Transmit Char
Routine

Since the simple software-SCI routines are of some interest to this application,
a more detailed description of the software-SCI transmit and receive
sub-routines follows. They both are based on a 16-bit timer where the
output-compare event is polled within the background loop.

Figure 17. Soft-SCI Transmit Char Routine Flowchart

The source code for the two routines is also listed here. Besides a few
counters, a 16-bit ONEBIT variable is used. It contains the actual length of one
bit at the current communication speed in 16-bit timer ticks. This variable is
initialized during the calibration phase.

ENTER

TEST CARRY

INITIALIZE, FEED AND

RUN 16-BIT TIMER

WAIT FOR

TXD PIN LOW

SET BIT COUNTER

TO 9

TIMER FLAG

SHIFT-OUT TRANSMIT
CHAR INTO CARRY FLAG

TXD PIN LOW TXD PIN HIGH

CLEAR TIMER FLAG

DECREMENT
BITS & TEST

TXD PIN HIGH

WAIT FOR
TIMER FLAG

CLEAR TIMER FLAG

SET

CLEAR

STOP TIMER

EXIT
= 0

<> 0
24 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
MCU Slave Software
Software-SCI Transmit Char Routine Source Code

;***
SCITX:
 PSHH
 PSHX

 BCLR 7,TSC ; and clear TOF
 LDHX ONEBIT
 STHX TMOD
 BSET 4,TSC ; clear timer
 BCLR 5,TSC ; run timer

 TXDCLR

 MOV #9,BITS ; number of bits + 1
 BRA SCITX1 ; jump to loop

SCITX2:
 LSRA ; shift out lowest bit
 BCC DATALOW

 TXDSET
 SKIP2 ; skip next two bytes
DATALOW:
 TXDCLR

 BCLR 7,TSC ; and clear TOF
SCITX1: BRCLR 7,TSC,SCITX1 ; wait for TOF

 DBNZ BITS,SCITX2 ; and loop for next bit

SCISTOP:
 TXDSET

 BCLR 7,TSC ; and clear TOF
SCITX3: BRCLR 7,TSC,SCITX3 ; wait for TOF
EPILOG:
 BSET 5,TSC ; stop timer

 PULX
 PULH
 RTS

Software-SCI
Receive Char
Routine

The software-SCI receive routine works in a similar way. When the 16-bit
output-compare event is polled, the value of the receive pin is scanned. No
provisions are made for stop-bit checking, framing check, noise detection, etc.,
mainly due to memory restrictions. Figure 18 shows the software-SCI receive
routine flowchart.
MOTOROLA Developer’s Serial Bootloader for M68HC08 25

AN2295/D
Figure 18. Software-SCI Receive Char Routine Flowchart

ENTER

RXD PIN

INITIALIZE & FEED

16-BIT TIMER

WAIT FOR

SET BIT COUNTER

TO 9

TIMER FLAG

SHIFT-IN RECEIVE
 CHAR & CLEAR MSB

SET MSB

CLEAR TIMER FLAG

DECREMENT
BITS & TEST

SET

CLEAR

STOP TIMER

EXIT
= 0

<> 0

WITH 1.5 BIT TIME

WAIT FOR
RXD LOW

RUN TIMER

FEED 16-BIT TIMER

WITH 1 BIT TIME
26 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
MCU Slave Software
Software-SCI Receive Char Routine Source Code

Here, the source code for software-SCI receive routine is listed.

;***
SCIRX:
 BRRXDLO SCIRX ; loop until RXD high (idle)

SCIRXNOEDGE:
 PSHH
 PSHX
 BCLR 7,TSC ; and clear TOF

 LDX ONEBIT
 LDA ONEBIT+1
 LSRX
 RORA
 STX TMODH
 STA TMODL

 BSET 4,TSC ; clear timer

SCIRX1:
 BRRXDHI SCIRX1 ; loop until RXD low (wait for start bit)

 BCLR 5,TSC ; run timer
 MOV #9,BITS ; number of bits + 1

SCIRX2: BRCLR 7,TSC,SCIRX2 ; wait for TOF

 LSRA ; shift data right (highest bit cleared)
 BRRXDLO RXDLOW ; skip if RXD low
 ORA #$80 ; set highest bit if RXD high

RXDLOW: LDHX ONEBIT
 STHX TMOD

 BCLR 7,TSC ; and clear TOF
 DBNZ BITS,SCIRX2 ; and loop for next bit

 BRA EPILOG
MOTOROLA Developer’s Serial Bootloader for M68HC08 27

AN2295/D
Software-SCI Macros Source Code

Several macros are defined across the two pieces of code. They improve the
readability or memory consumption.

SKIP1 MACRO
 DC.B $21 ; BRANCH NEVER (saves memory)
 ENDM

SKIP2 MACRO
 DC.B $65 ; CPHX (saves memory)
 ENDM

BRRXDLO MACRO

 IFNE RXDISIRQ
 IFNE SCIRXINV

BIH \1 ; branch if RXD low
 ELSE

BIL \1 ; branch if RXD low
 ENDIF
 ELSE ; RXD uses normal I/O pin
 IFNE SCIRXINV

BRSET RXDPIN,RXDPORT,\1 ; branch if RXD low
 ELSE

BRCLR RXDPIN,RXDPORT,\1 ; branch if RXD low
 ENDIF
 ENDIF

ENDM

BRRXDHI MACRO

 IFNE RXDISIRQ
 IFNE SCIRXINV

BIL \1 ; branch if RXD hi
 ELSE

BIH \1 ; branch if RXD hi
 ENDIF
 ELSE ; RXD uses normal I/O pin
 IFNE SCIRXINV

BRCLR RXDPIN,RXDPORT,\1 ; branch if RXD hi
 ELSE

BRSET RXDPIN,RXDPORT,\1 ; branch if RXD hi
 ENDIF
 ENDIF

ENDM

TXDCLR MACRO

 IFNE SCITXINV
 BSET TXDPIN,TXDPORT ; clr bit
 ELSE
28 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
MCU Slave Software
 BCLR TXDPIN,TXDPORT ; clr bit
 ENDIF

 ENDM

TXDSET MACRO

 IFNE SCITXINV
 BCLR TXDPIN,TXDPORT ; set bit
 ELSE
 BSET TXDPIN,TXDPORT ; set bit
 ENDIF

 ENDM

MC68HC908GP
Implementation —
ROM-Less
Programming

The GP devices belong to the M68HC08 Family. The GP devices have no
on-chip FLASH programming routines available. Therefore, all FLASH
programming must be done by the bootloader itself and is demonstrated in this
particular implementation.

The GP devices are primarily targeted for use with a low-cost watch 32.768 kHz
crystal. Since the value of the crystal is known, no calibration is conducted, thus
saving some additional MCU memory. A simpler Known MCU
Communication Speed scenario is demonstrated within this code.
MOTOROLA Developer’s Serial Bootloader for M68HC08 29

AN2295/D
Figure 19. GP Bootloader Flowchart

RESET

SRSR RESET
SOURCE TEST

MCU CONFIG

CLOCK, SCI INIT

TIMEOUT OR
NON-ACK

WAIT FOR COMMAND

IDENT? ERASE? WRITE? READ? QUIT?

SEND IDENT DATA

RECEIVE ADDRESS RECEIVE ADDRESS

RECEIVE LENGTH

RECEIVE DATA

COPY WRITE

ROUTINE TO RAM

COPY ERASE

ROUTINE TO RAM

CALL

ROUTINE IN RAM

RECEIVE ADDRESS

RECEIVE LENGTH

SEND DATA

SEND ACK

EXECUTE ILLEGAL

OPERATION

SEND ACK AND

WAIT FOR ANSWER

Y Y Y Y

Y

TIMEOUT EXPIRED OR OTHER THAN ACK CHAR RCVD

USER CODE

START

POR OR PIN CAUSED RESET
30 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
MCU Slave Software
FLASH Programming
Routines

The main code is similar to the previous implementation with the calibration
phase omitted. The FLASH programming by the bootloader is demonstrated
below. Three main sub-routines are defined:

• CPY_PRG — copies the selected routine into RAM

• ERASE_ALG — whole FLASH erase routine

• WR_ALG — whole WRITE erase routine

Since the flow is straight-forward, no flowchart is provided. Basically the
sequence of events is executed as per FLASH erasing/programming
specifications.

For improved readability, two timing macros (D_US and D_MS) are used within
the code.

FLASH Programming Routines Source Code

;***
CPY_PRG:
 TSX ;
 STHX STACK ; copy stack for later re-call

LDHX SOURCE ; LOAD WRITE ALGORITHM TO RAM
TXS
LDHX #PRG

CPY_PRG_L1:
PULA
STA X
AIX #1
DBNZ STAT,CPY_PRG_L1

 LDHX STACK
 TXS ; restore stack
 RTS
;***
ERASE_ALG:

 LDA #%00000010
 STA FLCR ; ERASE bit on
 LDA FLBPR ; dummy read FLBPR

LDHX ADRS ; write anything
STA X ; to desired range

 D_US #T10US ; wait 10us

 LDA #%00001010
STA FLCR ; set HVEN, keep ERASE
D_MS #T1MS ; wait 1ms

 LDA #%00001000
STA FLCR ; keep HVEN, ERASE off
D_US #T5US ; wait 5us
MOTOROLA Developer’s Serial Bootloader for M68HC08 31

AN2295/D
 CLRA
STA FLCR ; HVEN off
D_US #T1US ; wait 1us

JMP SUCC ; finish with ACK
ERASE_ALG_END:
;***
WR_ALG:
 LDA #%00000001
 STA FLCR ; PGM bit on
 LDA FLBPR ; dummy read FLBPR

 LDHX ADRS ; prepare addrs'
 STA X ; and write to desired range
 D_US #T10US ; wait 10us

 LDA #%00001001
STA FLCR ; set HVEN, keep PGM
D_US #T5US ; wait 5us

 LDHX #DAT ; prepare addrs'
TXS
LDHX ADRS
MOV LEN,POM

WR_ALG_L1:
PULA
STA X
AIX #1
D_US #T30US ; wait 30us
DBNZ POM,WR_ALG_L1 ; copy desired block of data

 LDA #%00001000
STA FLCR ; keep HVEN, PGM off
D_US #T5US ; wait 5us

 CLRA
STA FLCR ; HVEN off
D_US #T1US ; wait 1us

JMP RETWR ; finish with ACK (& restore STACK before)
WR_ALG_END:
END
32 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
MCU Slave Software
FLASH Programming Macros Source Code

;***
D_MS: MACRO

LDA \1 ; [2] ||
\@L2: CLRX ; [1] ||
\@L1: NOP ; [1] |

DBNZX \@L1 ; [3] | 256*4 = 1024T
DBNZA \@L2 ; [3] || (1024+4)*(arg-1) + 2 T
ENDM

D_US: MACRO
LDA \1 ; [2]

\@L1: NOP ; [1]
DBNZA \@L1 ; [3] 4*(arg-1) + 2 T
ENDM

MC68HC908GR
Implementation —
On-Chip ROM
Features, Known
Crystal Frequency

The GR devices also belong to the M68HC08 Family. The GR devices are
smaller derivatives of the GP family and in addition are equipped with ROM
memory with on-chip FLASH programming routines available also in the
user mode.

Both the GP and GR devices are primarily targeted for use with a low-cost
watch 32.768 kHz crystal. Since the value of the crystal is known, no calibration
is conducted, thus saving some additional MCU memory. A simpler Known
MCU Communication Speed scenario is also demonstrated within this code.

MC68HC908MR
Implementation —
ROM-Less
Programming, PLL
Circuit Usage

The MR devices are motor-control oriented members of the M68HC08 Family.
The MR devices also have no on-chip FLASH programming routines available.
Therefore, all FLASH programming must be done by the bootloader itself.

The MR family is equipped with a PLL circuit that can multiply the crystal
frequency. Typically, a 4-MHz XTAL is used as the reference frequency. This
implementation demonstrates how the PLL circuit is initialized for 8 times the
crystal frequency. The source PLL frequency is then 32 MHz and the bus
frequency is 8 MHz.

Again, when the value of the crystal is known, no calibration is conducted. A
simpler Known MCU Communication Speed scenario is also demonstrated.
MOTOROLA Developer’s Serial Bootloader for M68HC08 33

AN2295/D
MC68HC908GT and
MC68HC908EY
Implementations —
Fully Compatible
with MC68HC908KX

The code for GT and EY devices is identical to the KX code, except for the
memory mappings and ROM routines location. The one minor difference is that
GT family can't use CGMXCLK clock as a SCI module source. Thus baud rate
selection is possible only from the bus clock.

MC68HC908QT/QY —
Soft-SCI, On-Chip
ROM features,
Simpler ICG Usage,
(Spare FLASH
memory blocks are
utilized), Single-wire
Communication

The QT/QY devices are the smallest members of the M68HC08 Family. They
are equipped with a simple ICG module (running on fixed frequency 12.8 MHz
±25%). Also, ROM routines are available.

There are several spare FLASH locations (mainly among unused interrupt
vectors) that are also used for storing the bootloader code.

Single-Wire
Communication

Due to the small number of pins on QT devices, the single-wire SCI version has
been developed to keep the number of pins that are occupied by
communication to an absolute minimum. Figure 20 illustrates an example
single-wire RS-232 interface. The single-wire option has been backported to
JK/JL bootloader because it uses a software SCI also.

Figure 20. Example Single-Wire Schematic

SCI Application
Program Interface
(SCIAPI)

Software SCI communication is implemented on QT/QY (and also on JK/JL)
devices to reduce cost and enable the user code to call the SCI send and
receive routines (under certain limitations). The bootloader code for QT/QY and
JK/JL Families now implements SCIAPI. SCIAPI is the defined way to call the
SCI send and receive routines.

The details, implementation notes, and limitations are provided in the sci.h file
(of the QTQY folder). This file is the only resource that must be included in the
user ‘C’ code. The calling convention and overall usage is also mentioned
there. The main limiting factor for most applications will be that the SCI receive
routine is a blocking one. This means that routines will not return until an SCI
character is received. The 16-bit timer registers are manipulated also. Some
applications will use this code without problems.

TTL/232 shifter

Vcc

RS-232
connection

TXD

RXD

QT/QY device

10k
34 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
MCU Slave Software
The master side of the bootloader must be informed that the single-wire
communication is used. This can be done by calling the hc08sprg.exe software.
Use the following extended calling convention:

hc08sprg 1:S filename.s19

where 1 specifies which COM port is used for communication, and S stands for
single-wire. Original (old) format:

hc08sprg 1 filename.s19

now defaults to:

hc08sprg 1:D filename.s19

where D stands for dual-wire mode. The bootloader master can also detect the
presence of a single-wire interface if called:

hc08sprg 1:? filename.s19

The detection is only possible if the complete serial interface (mainly the level
shifter) is powered up and working BEFORE the bootloading process starts.
Because this is not usually the case, always specify the bootloading mode by
including either a “:S” or a “:D” in the parameter.

MC68HC908LJ
Implementation —
On-Chip ROM
Features, Known
Crystal Frequency,
PLL Circuit Usage

The LJ devices are members of the M68HC08 Family used to drive LCD
displays. The LJ devices have the ROM on-chip FLASH programming routines
available. The calling convention is slightly different from other HC08s (see LJ
datasheet, chapter Monitor ROM).

The LJ devices are primarily targeted for use with a low-cost watch 32.768 kHz
crystal. Since the value of the crystal is known, no calibration is conducted,
which saves additional MCU memory. A simpler Known MCU
Communication Speed scenario is also demonstrated within this code.
MOTOROLA Developer’s Serial Bootloader for M68HC08 35

AN2295/D
Target
Implementation
Comparison

Following table shows some attributes of different HC08 bootloader
implementations.

Table 2 Target implementation Comparison

HC08 Family

F
L

A
S

H
 M

em
o

ry
C

o
n

su
m

p
ti

o
n

Clock Source

R
O

M
 R

o
u

ti
n

es
U

sa
g

e

C
al

ib
ra

ti
o

n
C

o
n

d
u

ct
ed

SCI

FLASH
Erase
Page
Size

FLASH
Program

Page
Size

GP32 512B
32768Hz Xtal
or external clk.

no no hardware 128B 64B

GR4/GR8 320B
32768Hz Xtal
or external clk.

yes no hardware 64B 32B

JK1/JL1/
JK3/JL3
*(JK8/JL8 excluded)

384B
Xtal, RC oscillator

or ext. source
yes yes software 64B 32B

KX2/KX8 384B ICG yes yes hardware 64B 32B

GT8/GT16 384B ICG yes yes hardware 64B 32B

EY16 384B ICG yes yes hardware 64B 32B

MR8 512B
PLL with Xtal

(4MHz)
no no hardware 64B 32B

MR16/MR32 512B
PLL with Xtal

(4MHz)
no no hardware 128B 64B

QT1/QT4/
QY1/QY4

320B simpler ICG yes yes
software,

single-wire
possible

64B 32B

LJ12/LJ24 384B
32768Hz Xtal
or external clk.

yes,
different
version

no hardware 128B 64B
36 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
Master PC Software
Master PC Software

This section provides a detailed description of the bootloader host computer
master software. All code is written in C language with provisions made
allowing compilation both for Linux and Win32 platforms.

The bootloader specifications dictate that, as much as possible, intelligence is
executed in the host computer instead of by the MCU, minimizing MCU
memory consumption. Only primitive functions are implemented in the MCU.

The host computer master software design is straight-forward and is a
sequence of several steps:

1. Opening serial port

2. Opening source S19 file

3. Waiting for reset of MCU

4. Calibrating MCU

5. Reading MCU info

6. Remapping MCU interrupt vectors

7. Checking whether source S19 data fits into physical MCU memory

8. Erasing and programming MCU

9. Cleaning-up, exiting program

This sequence is shown in Figure 21.

Linux is a trademark of Linus Torvalds
Windows and Win32 are registered trademarks of Microsoft Corporation in the U.S. and other countries.
MOTOROLA Developer’s Serial Bootloader for M68HC08 37

AN2295/D
Figure 21. Bootloader Master Flowchart

In the following text, some sections of the master bootloader code will be
described in more detail. All actions required for reprogramming the M68HC08
device are fully described in the slave implementation and protocol sections of
this document. Mainly the specific master characteristics are emphasized.

File Structure The following file structure is set up:

• M68HC08 Image Operations:
s19.c

• UART Manipulations:
serial.h
seriallinux.c (serialw32.c)

• System Platform Dependent Files:
sysdep.h
- sysdeplinux.h

START

ENOUGH

INIT UART

OK? SURE (Y/N)?

ARGUMENTS

OPEN S19 FILE

OK?

WAIT (HOOK) FOR

OK?

MCU RESET

CALIBRATE MCU

OK?

X(1)

READ MCU INFO

OK?

PRINT MCU INFO

SETUP INTERRUPT

OK?

VECTOR TABLE

X(2)

X(0)

X(3)

X(4)

X(5)

X(6)

CHECK S19

IMAGE TO FIT

X(-1)

PROGRAM MCU

OK? X(8)

UNHOOK MCU

CLOSE UART

EXIT

NOTE: X(2) MEANS EXIT

WITH EXIT CODE 2

DISPLAY WARNING

IF NOT
38 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
Master PC Software
- sysdepw32.h

• Generic and Main Program Files:
hc08sprg.h
main.c

• M68HC08 Specific Programming Files:
prog.c

M68HC08 Image
Operations

In order to perform the necessary operations with the M68HC08 code, the
master software keeps a binary image of the M68HC08 memory. Also, the
information about whether an actual byte is to be programmed into the MCU is
stored. This is realized through following structure:

typedef struct {
BYTE d[0x10000]; // data
BYTE f[0x10000]; // valid flag 0=empty; 1=usercode; 2=systemcode

} BOARD_MEM;

where image is the actual variable defined as follows:

BOARD_MEM image;

After the source S19 files are read, this array contains the actual data to be
programmed into the MCU irrespective of its original order in the S19 file. The
function int read_s19(char *fn) defined in s19.c implements the S19 file
opening, reading, and translation from S19 hex-format into this binary array.

Interrupt Vector Table
Translation

After the ident information is read out of the MCU, the following operations
within the image are carried out:

– The code is scanned if any interrupt vectors are present between the
MCU interrupt vector table address and 0xFFFF (the last existing
physical address of the M68HC08 MCU). It doesn’t make sense to
translate data in S19 files without interrupt vectors, such as the S19
configuration data.

– If interrupt vectors are present, translation of these vectors is done
exactly as described in Interrupt Vector Table Translation. Then,
the original address spaces in the interrupt vector table are marked
as unused (thus not being reprogrammed).

These operations are executed in the function int setup_vect_tbl(void)
defined in prog.c file.

Checking Memory
Boundaries

The last check carried out before the code is actually programmed into the
MCU is whether the code from the S19 file lies in the proper memory locations
(between the memory boundaries that are reported by the MCU in the ident
table).
MOTOROLA Developer’s Serial Bootloader for M68HC08 39

AN2295/D
If any value outside the range of addresses between the Start address of
reprogrammable memory area and the End address of reprogrammable
memory area is found, a warning is generated.

This check is done within int check_image(void) also defined in the prog.c
file.

UART Manipulations In files seriallinux.c or serialw32.c, the following UART manipulation
functions are defined:

int init_uart(char* nm);
int close_uart(void);
int send_break10(void);
int flush_uart(int out, int in);
int wb(const void* data, unsigned len);
int rb(void* dest, unsigned len);

The pair int init_uart(char* nm) and int close_uart(void) manage
opening (initialization) and closing of the specified UART port.

Another pair of functions int wb(const void* data, unsigned len) and
int rb(void* dest, unsigned len) is used for writing and reading blocks
of data into/out of UART.

There are two additional functions required for the bootloader to work:
int send_break10(void) and int flush_uart(int out, int in). The
first one sends a BREAK character to the UART, the latter one cleans up both
directions (in/out) of the UART buffers.

System Platform
Dependent Files

The header file sysdep.h includes either sysdeplinux.h or sysdepw32.h
depending on which platform software is being compiled. The platform-specific
declarations are then used.

Generic and Main
Program Files

The header file hc08sprg.h contains the rest of the platform non-specific
declarations needed to compile the application. The tiny main.c containing the
main program as shown at the beginning of this chapter (see Figure 21).

M68HC08 Specific
Programming Files

The last, but most important part of the PC master bootloader software, is
contained in the prog.c file. It implements most of the intelligence of the PC
bootloader software as mentioned in previous chapters.

Numerous routines are implemented in the prog.c file:

int hook_reset(void)
int could_be_ack(unsigned b)
int calibrate_speed(void)
int read_mcu_info(void)
40 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
Master PC Software
int setup_vect_tbl(void)
int check_image()
int read_blk(unsigned adr, int len, BYTE *dest)
int erase_blk(unsigned a)
int prg_blk(unsigned a, int len)
int prg_area(unsigned start, unsigned end)
int prg_mem(void)
int unhook(void)

Initial Hook (Waiting
for MCU Reset)

Right after all initializations are done in the PC, a loop, in which any
communication from the MCU is expected, is started. The
int hook_reset(void)routine implements all necessary steps to establish
initial communication with the MCU. The following routine is also an essential
part.

Checking ACK

A routine, int could_be_ack(unsigned b), checks whether a received
character fits the possible set of characters that can be received due to a
communication speed mismatch (See Unknown MCU Communication
Speed).

Speed Calibration A speed calibration loop, implemented in the int calibrate_speed(void)
routine, follows the scenario fully described in the section entitled Slave
Frequency Calibration. If no ACK is received from the MCU, another break
character is sent.

MCU Info Reading Right after the calibration is successfully finished, the PC requests the Ident
Command so the MCU sends out the information about itself. This is achieved
in the int read_mcu_info(void) routine.

Image Manipulations The two functions int setup_vect_tbl(void) and int check_image()

are described above (see M68HC08 Image Operations).

Block Operations Three main data exchange operations are performed:

• Erase block

• Read block

• Write (program) block

These basic operations are implemented in the functions:

int erase_blk(unsigned a)
int read_blk(unsigned adr, int len, BYTE *dest)
int prg_blk(unsigned a, int len)
MOTOROLA Developer’s Serial Bootloader for M68HC08 41

AN2295/D
The actual implementation is very straight forward and follows the rules
described in respective sections in Interpreting MCU Commands.

Main Programming
Loop

The core of the bootloader’s programming capabilities is implemented in the
function int prg_area(unsigned start, unsigned end). The task of this
routine is to read data from an image, split it into blocks of appropriate size
(minimum erase/write block sizes). Then the erase block and write block
routines are called, respectively.

The routine also prints the progress information to the standard IO (for
example, block boundary addresses, progress indicator).

One additional auxiliary function is included int prg_mem(void). It retrieves
the actual lowest and highest memory addresses that must be programmed
and that are used for calling the int prg_area(unsigned start, unsigned
end) function finally.

Final Unhook Function int unhook(void) sends out the Quit Command.
42 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
Bootloading Procedure Demonstration
Bootloading Procedure Demonstration

The bootloader binary code (S19 file) is loaded in the MCU like any other
regular HC08 code (e.g. using MON08 serial programmer or other). Then the
MCU is soldered (or socketed) in the application.

From now on, the user can download the HC08 user application code via SCI
interface using the bootloader utility.

Bootloading
Operation

Open a command prompt in Linux or Windows in the directory where the copy
of hc08sprg executable and S19 files reside.

Assuming the serial board is connected (but not yet powered on) to first serial
port (COM1, /dev/ttyS0) - invoke the bootloader using following sequence:

hc08sprg 1:D test.s19

Figure 22. Bootloader Invocation
MOTOROLA Developer’s Serial Bootloader for M68HC08 43

AN2295/D
The bootloader now expects the ACK command to be received from the MCU
bootloader enabled application. So now turn the power on for serial board and
if all connections are OK, the MCU now communicates with the PC. The
calibration procedure occurs (the bootloader version with unknown
communication speed is used), followed by IDENT command. The information
that are aquired from the MCU are then displayed on the screen as shown in
Figure 23:

Figure 23. First Stage of Bootloading
44 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
Bootloading Procedure Demonstration
Confirm by pressing ‘y’ and the bootloading (FLASH reprogramming) will
proceed. The user application will be then started.

Figure 24. Bootloading Completed
MOTOROLA Developer’s Serial Bootloader for M68HC08 45

AN2295/D
Memory Boundary
Overlap Example

If the user tries to bootload an application that will not fit in the actual MCU
memory, a warning is displayed. The user may decide to continue, but very
probably not all memory locations would be properly programmed (the user
code is either out of available FLASH memory or it overlaps with the bootloader
code).

Figure 25. Memory Boundary Overlap Example
46 Developer’s Serial Bootloader for M68HC08 MOTOROLA

AN2295/D
Bootloading Procedure Demonstration
This page is intentionally left blank.
MOTOROLA Developer’s Serial Bootloader for M68HC08 47

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002
AN2295/D

	Project Objectives
	Project Goals
	Requirements
	Demo Features of Bootloader Application

	FC Protocol Description
	FC Protocol
	Initial Hook-Up
	Slave Frequency Calibration
	Interpreting MCU Commands
	Bootloader User Table

	FC Protocol, Version�1, M68HC908 Implementation
	Interrupt Vector Table Translation
	User Code Start
	System Limitations

	MCU Slave Software
	MC68HC908KX Implementation — ICG, On-Chip ROM Features
	Internal Clock Generator (ICG) Usage — Initialization
	Internal Clock Generator Usage — Trimming

	MC68HC908JK/JL Implementation — Soft-SCI, On-Chip ROM Features
	Software-SCI Transmit Char Routine
	Software-SCI Receive Char Routine

	MC68HC908GP Implementation — ROM-Less Programming
	FLASH Programming Routines

	MC68HC908GR Implementation — On-Chip ROM Features, Known Crystal Frequency
	MC68HC908MR Implementation — ROM-Less Programming, PLL Circuit Usage
	MC68HC908GT and MC68HC908EY Implementations — Fully Compatible with MC68HC908KX
	MC68HC908QT/QY — Soft-SCI, On-Chip ROM features, Simpler ICG Usage, (Spare FLASH memory blocks ar...
	Single-Wire Communication
	SCI Application Program Interface (SCIAPI)

	MC68HC908LJ Implementation — On-Chip ROM Features, Known Crystal Frequency, PLL Circuit Usage
	Target Implementation Comparison

	Master PC Software
	File Structure
	M68HC08 Image Operations
	Interrupt Vector Table Translation
	Checking Memory Boundaries

	UART Manipulations
	System Platform Dependent Files
	Generic and Main Program Files
	M68HC08 Specific Programming Files
	Initial Hook (Waiting for MCU Reset)
	Speed Calibration
	MCU Info Reading
	Image Manipulations
	Block Operations
	Main Programming Loop
	Final Unhook

	Bootloading Procedure Demonstration
	Bootloading Operation
	Memory Boundary Overlap Example

